
' !

N,t_ !,
I

REVIEWOF NASTRANDEVELOPMENT
_" RELATIVETO EFFICIENCYOF EXECUTION

By Caleb I#. McCormick

; Director of Engineering Analysis I,
The MacNeal-SchwendlerCorporation

, L_s Angeles, California
i "'

SUb_.Y

I This paper reviews the development of NASTRAN rclative to the efficiency
: of execution, with particular emphasis on those ite_.swhich have changed sig-
I nificantly since the original release of NASTPJ_N. Features discu,:,sedinclude _.

. main and secondary storage utilization, matrix packing, matrix assembly, matrixmultiplication,matrix decomposition and equation solution. Also _.brief look

i into the future discusses the questions of faster arithmet-_cunits and moreeffective storage utilization. In some cases the improvements 1,iNASTRAN

I efficiency have resulted from taking advantage of hardware developments, whilein other cases increased efficiency has resulted from improvements in the state
of the art for data processing or matrix operations. The modular design of
NASTRAN has made it possible to improve the effic,.'encyin many parts of NASTRAN
without changing the basic design of the program.

INTRODUCTION

The main goal in the original deslgn specifications for NASTRAN was the
solutlon of large problems in both statics and dynamics. Although efficiency i

has always been an important consideration, the primary emphasis in the begin-
ning was on the wide range of problem types of large size. However, it was '-_
recognized that in order to solve large problems, it would be mandatory to ._
take advantage of sparse matrix techniques. Consequently, all of the original

i! matrix operations were designed to utilize sparse matrix techniques. Si'_ce the

original release of NASTRAN, a number of improvements have been made in the
efficiency of the matrix routines by taking advantage of hardware developments
and improvements in the state of the art for data processing and matrix opera- _
tions. _

mE

Hardware and software limitation¢ requ',red that the early versions -_
#.... NASTRANuse only sequential secondary _,,_ge. The current versions of NASTRAN _

use direct access devices for seconda_" _ _'_.F,e. Level 16 will include the
!_,_ use of random access coding in the matri/ a:._embly and equation solution opera-
_ tions. The use of multiple types of secondary storage devices w._.ll be an ,
, , important development for future releases of _STRAN.

• ¢.

1974006473-013

......... i

r
Most of the original code for NASTRANwas written in F_RTRANIV in order j

to reduce both the development costs and maintenance costs. Hacbine language
was used only in those placed where it was necessary to interface with the
resident operating systems. However, efforts were made to improve the effi-
ciency of the compiled code by care in the use of F_RTRAN. For example, in _,
the case of nested D_ loops it was found that, for some compilers, the speed i
of the inner loops for multiply-add operations could be improved by a factor [
of two by simply writing the inner loop as _ separate subroutine. Substantial
improvements have been made in Level 15 and Level 16 through the use of machine !
language in many of the more important matrix operations. Even so, except for ti

• the transfer of information between main storage and secondary storage and !

the matrix packing routines, the use o£ machine language has been restricted
to the inner loops of the matrix operations.

>

The original emphasis on the solution of large problems has caused NASTRAN
to be relatively inefficient for small-and medium-size problems. Hany of
the Level 16 improvements will substantislly improve the efficiency of NASTRAN

l for the smaller problems. The main improvements in this area are associated
I with the more effective use of main storage and additional options for the
, matrix packing routines.
L

'j

, , MAIN STORAGE UTILIZATION i_
:°_- i

i
The original design of NASTR_Nrecognized the importance of l_reserving as

_' much as possible of the main storage for matrix operations. The overlay struc-
ture was carefully designed to m_nimize the amount o£ code that had to be
resident in main storage, particularly during the operation of important matrix
routines. Also, in order to preserve the maximum amount o£ main storage for :

'_. each matrix operation, all results were transferred to secondary storage prior
to the start o£ a new major operation. This transfer o£ information to and

£

from secondary storage placed a heavy burden on the matrix packing routines }
', and the associated read and write routines. These routines have contributed

_., heavily to the relative inefficiency of _STRAN, : ,

.:-., The original design of the overlay structure for NASTRAN is still in use _

._ • i -"

• _.... and there appears to be no need for major changes in this area. The ineffi-
:'._;' ciencies resulting from the transfer of information between main and secondary
-_.. storage has been a source of some concern and has received extensive revision

i,-'_:,.:'I in both Level 15 and Level 16.

Y_ "_3 In order to reduce the requirement for transfers between main storage and
,_/ " ' secondary storage, Level 16 will provide an option to use a portion of main

ii': _' -1 storage for the retention of data which would otherwise be transferred to
,,,_ secondary storage. This option is ,under the control of the individual func-

_. tional modules and has been implemented by allowing the use of multiple buffers; in ,_ain memory by the I/_ routines. This option will be par_icu!arly effective
l when relatively small amounts of frequently used information can be retained in

main memory and thereby avoid excessive transfers from secondary s_orage. A
_ : strong candidate for using this option is the numerical integration in transient

1974006473-014

'¢

response problems, where currently the triangular factors of the dynamic matrix
must be read from secondary storage at each time step. If the problem is not
too large, it may be convenient to allocat_ sufficient main memory to hold the
triangular factors in main storage. This option should also be useful for non-
linear problems where the problem sizes tend to be small and repetitive opera-
tions form an important part of the total solution time.

SECONDARYSTORAGEbTILIZATION

All of the transfers of infoz_ation between secondary storage and main
storage in the early releases of NAST_ used sequential access methods. Much
of the original code was also written in F_RIRAN, which further contributed to

: the inefficiencies. The original dynamic use of files as supervised by the
- NASTRANExecutive System has stood the test of time and remains today essen-

tially as in the original de3ign.

Sequential procedures are still used for all write operations. However,
read operations may be performed either by the use of sequential procedures or

i procedt:res. Two important uses of the random access procedures in Level
random

16 are for matrix assembly and the back substitution part of the equation

solution routines.
I MATRIX PACKING

Efficient operation with large sparse matrices requires an effective
packing scheme in order to minimize main memory requirements and the time
required to transfer the nonzero elements fro_ secondary storage devices to
the working space in main memory. The current matrix packing logic is similar
to that used in th_ original design of NASTRAN. However, substantial improve-
ments in the efficiency were made in Level 15, including the use of machine
language on the IBM versions. Level 16 will include further improvepents in

_. efficiency, including the use of assembly language on the Univac version. The
_. Level 16 matrix packing routines will use machine language on all machines and
_ will be 1-I/2 to 2 times faster than Level IS.

:J:" The matrices in NASTRAN are stored by columns, and each column constitutes
:_- , a logical record. The first nonzero term in the column is described by an
- integer indicating its row position and the floating point number describin_ its

value. If the following term is also nonzero, only its value is stored, and
.... in general the position of only the first term in the series of nonzero terms

°_! is stored. In order to improve the efficiency when working with strings of
, nonzero terms, the number of nonzero terms in the string is stored along with

the row numbez of the first nonzero term in the string. An option is also pro-
vided tc include the row number of tbc last nonzero term in the string along

0 with the number of nonzero terms in the string. This option makes it possible ,_
to perform the backward substitution operation for equation solution in a

c_ more efficient manner. _,

Jf_

,|

] 974006473-0] 5

.kn impo_.ant addition to the packing routines in Level 16 is a new non- " i
transmit option. In the case of a read operation, each call for this option L

results in the return of the row number of the first nonzero term in the next _
string and the number of terms in the string. In the case of a write operation, :P

each call returns the location of the next available space in the NASTRAN I/_ i
: buffer and the number of spaces remaini_lg in the current buffer. The using L_

routines can then operate directly in the I/¢ buffers, and only the time asso- [
ciated with the initial call for each string is required fo:- the packing opera-
tion. The time to access a term or store a term can be absorbed in the using i

: routine, as this operation is required, even when operating outside the buffer. [
t

For strings of reasonable length, the time per _erm for the nontr_nsmit
operation is very small and may well be ten or twenty times less than the

transmitting pack options. _.tis option is particularly effective when each

term in the buffer is used for a single operation, such as for direct transient
i

response or eigenvalue extraction using the inverse power method, where the

-i running times are dominated by equation solutior:s with single right hand sides, ;

If the transmitting pack options are used in th,_se cases, the rmming time is

dominated by the packing times, which in turn may be s,_'veraltimes the asso-
ciated arithmetic times. If the nontransmit option is used, the inner loops

will run at arithmetic speed, and the speed of operation with single right
hand sides will be several times faster.

!
_.x. i

MATRIX ASSEMLLY i
z

The comparison of the matrix assembly _es for various assembly procedures
is indicated in Fi_-Jre I. The initial strai_,xt portion of the solid line

indicates a linear growth of matrix assembly time with problem size when the

• complete stiffness matrix can be held in main memory. The curved portion of the :

,I solid line indicates a rapid growth in matrix assembly time with problem size

when the st:f?;;ess maerix is _ssembled from element stiffness matrices that

are _tored on _ sequential secondary storage device. The rapid growth in

i. matrix assembly T:,.,tefor large problems was unacceptable for NASTRAN.

S:nce the large _atrices i_ NASTEAN require the use of secondary storage

_. for assembly, and sinco only s_quential access procedures were available during i _

,_'_''1 the initial development period, the regeneration procedure indicated by theii,._ loLg-dash--snort-dash line in Figure i was used. In this procedure the re-

__.o_,_"1 quxred partitinns of the el(_ent stlff_ess ,.._rices are regenerated at each

'""....I grid point as r,..,eded,pointsC°nsequent_'F'_"_:_ea,_'u"_''• ¢_..thi._line is proportional:_i' !" to the number of grid co_m,,t_, to
:') ement. As indicated!

in Figure I, this procedure will _. s,&_.,ior the age of element matrices1
__'__:-_,1 on sequential access devices tot larg_ p.-, i;m _. __:e ")cation.of the cross-over

,;_',•• point will depend on the zatio of the ti_,: to ,,e_v.r ':__an element stiffness .

i | matrix tO the time rcqulred to retrieve t,, s.,_e inf.,rmation from
a sequential

_ | storage device. A further degradation ,r,r_-ni:_ ;_ occurs if all of the

'_'_!:"lt_s"I element generation routines cannot be :,.,d L._m,._u .,e_:oryaL the same time.

 i;1.... Thislo=terproble,wasnot evere:,,-,e releasesof because

.':,_. the element library was small and co:.xst_* of relatively simple elements.

1974006473-016

| , . .

• ._" _'t,"' -_

.4"

The dashed line in Figure i indicates a linear growth in matrix assembly
time when the element stiffness matrices are retrieved from a direct access

secondary storage device. The slope of this line is proportional to the time
to generate the stiffness matrix for a single element plus the time required to
retrieve the element stiffness from a random access device. A new matrix assem-

bly module has been completed for Level 16 in which the element matrices are
generated for each type of element and stored on a random access device. The
comTIete matrix is generated by assembling as many columns of the matrix as
possible in packed form in main memory, using random access methods to retrieve
the element matrices as needed. Since only a single element routine is needed
in main memory during the formation of the element matrices, there is no
penalty for having a large finite element library.

The new matrix assembly module also provides for taking advantage of
identical finite elements in the model. In the case of identical elements,

the element generation routine generates only one matrix for each group of
identical elements. With random access assembly procedures, it is a routine
operation to point to the single element matrix each time it is required for ,-
matrix assembly. This procedure substantially reduces the matrix generation
time when there are large numbers of identical elements.

Test runs indicate that the central processor time for the actual matrix
assembly is about the same in Level 16 as in Level 15, even though the element
matrices are retrieved from a secondary storage device in Level 16. In other
words, the overhead for the matrix assembly operations in Level 16 is very
small. The removal of the requirement to regenerate the element matrices at
each connection will reduce the matrix generation time in proportion to the
number of connected grid points. The new matrix assembler is particularly ,
impoltant for the new, higher order elements where the number of connections
are often greater, and the generation times for the element matrices are sub-
_tan_ially greater than for the elements in Level 15. i

5

MATRIX MULTIPLY-ADD .j

The use of sparse matrix multiply-add routines _.aspart of the original
design of NASTRAN. Major improvements in efficiency were made in Level 13 with
the use of machine language inner loops and improved logic for Method 2. Level
16 includes a new Method 5 and improved logic for the transfer of the packed _
ma_rix terms directly into the working area for Method 2. The details of the :,
multiply-add operations are given in the NASTRAN Theoretical Manual. __•.#_

The summary of multiply-add operations in Table I presents the overall _!_-
picture o_ multiply-add efficiency in NA_rRAN. Various corbinations of densi- /_
ties of the [A] an_ [B] matrices are presented for both the nontranspose and the _
transpose multlply-add options. In each case the most efficient multiply-add _
method is 3iven for the particular combination of densities. The efficiency .,
of the inner loop for multiply-add is always proportional to the length of the _<
strings o_" the second operand. The total arithmetic time is always proportional _
to the d,_nsity of the matrix containing the first operand, except for the non-
transpose option of Method2, for which the arithmetic time is proportional to ,_

ii _
"5_'_ -

_rL,

i

"1974006473-0"17

the product of the densities of the two matrices. Although the matrix packing
operations contribute to the total execution time, these packing times are not
of primary consideration in the relative efficiency of the multiply-add methods.

For either the transpose or the nontranspose multiply-add, the summary in
• Table 1 indicates that, when [B] is dense, Method 1 will be selected regardless

of the density of [A]. In these cases, the arithmetic times are proportional
to the density of [_]. Since [B] is assumed full in Method i, the multiply-add
loop operates at maximum efficiency. However, unless [B] is very dense, a large
number of unnecessary zero operations will be performed.

If [B] is sparse, Method 2 will always be selected in the nontranspos_
case, r_gardless of the density of [A]. In this case the arithmetic time will
be proportional to the product of the densities of the [A] and [B] matrices.I

; The efficiency of the multiply-add loop will be proportional to the lengths of
the strings of the [A] matrix. The internal selection procedures assume that
the average length of the strings in the [A] matrix is proportional to the
density of the [A] matrix.!

!

i _ For the transpose ca_e with [B] sparse and [A] sparse, Method 2 will
usually be selected. Aft ough the efficiency of the multiply-add loop will be
low due to the short strings (low density) in [A], the number of operations
will be proportional to the density of [A], and the total arithmetic time will

',_ be relatively short. If there is sufficient main memory to perform Method 1 in
a single pass, the total time will be less than for Method 2 because of the
higher efficiency of the multiply-add loop. In neither case is any advantage
taken of the sparsity of the [B] matrix.

For the transpose case with [B] sparse and [A] dense, a new Method 3 is
the most efficient. In this method the [A] matrix is assumed full and the

multiply-add loop operates at maximum efficiency. However, unless [A] is
i very dense, a large number of zero operations will be performed. The execution

time for Method _ is proportional to the density o£ the [B] matrix, with no
advantage being taken of the density of the [A] matrix. A nontranspose option

i is not provided for Method 5, as Method 2 handles all cases of interest more

"i_.:. l:,.' efficiently.

] MATRIX DECOMPOSITION

:_iii_!l?_ The storage and indexing procedures used in NASTRAN for the new symmetric
i./I decomposition routine will be discussed with reference to the matrix in Figure

i 2. Initial nonzero terms are indicated by X's with the O's indicating nonzeroterms created as the decomposition proceeds. The shaded terms indicate the
: relative locations for nonzero contributions to the upper triangular factor

when the first row of the matrix is the pivotal row, If there is sufficient
L main storage to hold all of the shaded terms, the decomposition may proceed

without the need for writing intermediate results on secondary storage. The
' shaded terms in Figure 3 indicate the relative locations for nonzero contribu-

tions tO the upper triangular factor when the second row is the pivotal row.
In this case not only are there more active columns, and therefore more m_in

,

, 12.i

1974006473-018

i

'" "_1" ". , _ • '__e.'_CD/,_m_-_ -_ _ 'o _ _'_-4_F'_" _ ' "
! ,i

I
storage is required, but one of the new active columns (column 8) is inserted
in an intermediate location.

The management of the working storage for triangular decomposition is
indicated in Figure 4. The pivotal row and the associated active column vector
are storeu in a separate space. The active column vector contains the column
number for each nonzero term in the pivotal row. The lo:_er portion of the main
working storage is always used and the amount is proportional to the number of
active columns at each stage of the decomposition. The amount of storage
required for each of the first six pivotal rows for the matrix shown in Figures

, 2 and S is indicated on Figure 4. The shaded area indicates the storage space
: required for pivotal rows 1, 5 and 6, all of which have six active columns.

At any particular stage of the decomposition, the previous contributions are
accessed according to the number of active columns immediatly preceding the

" pivotal row, and *_he results of the current calculations are stored according
to the number of active columns in the pivotal row.

}, As the decomposition proceeds, the number of active columns can increase, by any number up to the number of rows remainiug in the matrix. However, if
' it is assumed that the number of active columns will never decrease by more

than one for each new pivotal row, it is possible to store the current calcu-

lations dyuqmically in the same array with previous calculations without inter-

ference. Tnis is equivalent to assuming that once a column becomes active it
"_ remains a=tive until the column intersects the diagonal (column number = pivotal

row number). This assumption will not cause errors in the calculations but
will result in the performance of a number of zero operations and will require
additional working space in main storage.

The shaded part of Figure 5 indicates the nonzero terms in the upper tri-
angular factor of a matrix where the original nonzero terms are indicated with
X's. It can be seen that columns 7, 9 and 15 are terminated at row 3, and
columns 11 and 14 are termi).atedat row 6. The new matrix decomposition routine
in Level 16 provides for the termination of active columns by changing their
status from active to passive. Columns may also change their status from
passive to active as indicated in Figure 5 by column 9 at row 7, or column ii

_ at row i0. The provision for passive columns reduces the number of active
:'_'_ columns when row 4 is pivotal from 6 to 3, with an associated reduction in

_}, main storage requirements and the number o£ arithmetic operations. The --
complete details of the decomposition procedure will be given in the Level 16

•-'_':' NASTRAN Manuals.
d

,,_, The storage management indicated in Figure 4 applies only when there is
sufficientworking storage for all of the terms generated by the pivotal row.

:_ When the number of active columns exceeds the capacity of working storage space,
_{__i an automatic spill logic is provided. The overhead for the new spill logic is

substantially less than provided in the original matrix decomposition routine.
Both the CPU cost and the number of secondary storage transfers have been
substantiallyreduced. It should be possible to economically run large problems
with about half as much main storage in Level 16.

In order to improve the efficiency of sparse matrix operation in NASTRAN, '_

the inner loops are usually written in assembly language. In general the use of ._j

974008473-0 9

I

I
assembly language will reduce the number of instructions and will allow for

more effective use of the high speed registers. In the case of the new decompo-

sition routine, three separate inner loops are provided. The differences in
the inner loops are associated with the need to combine the previously complctec

results in the working storage space. Special provision is made when no pre-

: viously calculated results need to be combined. This applies to the first row

of the matrix and for all rows immediately following the creation of passive

columns. Special provision is also made for the c; _e of consecutive active

columns. This option improves the efficiency of indexin_ for band matrices and
when there are large numbers of active columns adjacent to the diagonal. The

third loop provides for the general case in which a test must be made inside

the loop for the existence of previously calculated terms.
)

The aim in the NASTRAN decomposition routine has been to provide a

i general purpose routine which will operate efficiently for different orderings
of nonzero terms, including the cases of band matrices and partitioning or

substructuring types of matrix ordering. The NASTRAN decomposition routine

has been designed to take advantage of different sequences of nonzero terms

along with the use of an ordinary step-by-step elimination procedure. Test
runs with square frameworks of 2600 order have given improvements in running

time by factors of 2 to 4. It is easy to design problems which will show sub-

stantially greater improvements in efficiency, particularly if the new spill

logic is used with reduced main memory requirements or unusual sequences for

matrices are employed.

The familiar ordering for a band matrix of a square array is shown in

Figure 6. Figure 7 indicates the ordering of the same problem with partition-

ing. In this case, the square array has been divided into four partitions

with each of the partitions numbered first and the boundary points numbered
last. Figure 8 indicates the locations of the nonzero terms in the triangular
factor when the square array is ordered for partitioning. The X's indicate
the origlnal nonzero terms and the O's indicate nonzero terms created during
the decomposition operation. In the case of the band matrix, the number of
nonzero terms in the triangular factor is 129, whereas Figure 8 contains only
102 nonzero terms. Since the time for the forward/backward substitution opera-
tion is directly proportional to the number of nonzero terms in the triangular

factor, the time for the forward/backward substitution operation when the
squar_ array is ordered for partitioning is nn]y about 80% of that when the

array is ordered for a band. The number of multiplications for the decomposi-
tion when ordered for a band is 294, whereas the number indicated in Figure 8
is only 177. This indicates that the time for the decomposition when ordered
for partitioning is only about 60% of that when ordered for a band. This

example indicates the kinds of savings that are possible in decomposition and
equation solutlon, when the decomposition routine can locate the nonzero terms
in a triangular f.:_or in a routine fashion. Even greater savings are possible
when the partitions are not strongly connected.

I

14

1974006473-020

?.

j.

EQUATION SOLUTION

The forward/backwardsubstitution operation for the new equation solution
routine in Level 16 is performed by holding es many columns of the right hand
side in main memory as possible. The forward and backward substitution opera-
tions are performed by reading the triangular factors from secondary storage
and performing the indicated arithmetic operations. These operations are per-

+ formed ir:place, and at the conclusion of the backward substitution operation
the solution vectors are stored in the same locations as the original right
hand sides. The nonzero terms of the triangular factors are located directly
in the I/_ buffers in strings, using the new nontransmit option of the matrix
packing routines.

The general procedure for the forward pass in equation solution is indi-
cated in Figure 9. The operation for each column begins by locating the first
nonzero string in the lower triangular factor. The no,Lzeroterms of the cur-
rent column of the lower t_'iangularfactor are indicated by the letter L in
Figure 9. Next, the associated term in the first column of the right hand
side is tested for zero. If the right hand side term is nonzero, the multiply-
add operations are performed for the string, and the results are stored in the
first col_mn in the locations indicated by the number I in Figure 9. Similar
operations are performed for all columns on the right hand side having nonzero
entries in the row associated with the current column o_ the lower triangular
factor. The X's on Figure 9 indicate nonzero operations exist in columns i,
2 and 5. The results for the second string of the current column in Figure 9
are stored in the locations indicated by the number 2. The forward pass is
completed by performing similar operations for all columns in the lower trian-
gular factor.

The b:,_cksubstitution operation is performed by reading the strings of +

the triangular factor in reverse order. The general procedure for the backward

solution is indicated in Figure I0. _e operation for each row of the upper +,i_ "
factor begins by locating the last nonzero string in the current row, indicated ,_
by the letter U in Figure 10. The dot product of the string ",smade for each _:
column on the right hand side in turn, without testing for zero. The location
of the se :ondoperand is indicated by the number 1 in Figure I0. The partial
solutions are accumulated in the current row of the right hand side, as indi-
cated by the X's in Figure 10. The backward pass continues by performing simi-
lar operations for all nonzero strings in the current row of the upper trian-
gular factor. The locations of the second operand for the next nonzero string
of the upper triangular factor are indicated by the number 2 in Figure I0.
When all of the dot products have been performed for the current row of the
upper triangular factor, the solution will be located in the positions indicated ",
by the X's. The backward solution is completed by performing the same opera- ',:
tions for each row of the upper triangular factor. The final solution is then
transferred to secondary storage. If additional right hand sides exist, the --_"
next group of columns can be transferred to main storage and a new forward pass ,,
started.

It can be seen that the forward/backward substitution operation in Level _i
16 takes full advantage of the sparslty of the triangular factors. Also, all _:;_

'(

.L

1974006473-021

terms in the triangular factors a:e located directly in the buffers, so full "
advantage is taken of the str_ng _otation and the nontransmit packing option.

Full advantage is also taken of the sparsity of the right hand side in the
forward pass. Test runs with the new equation solution routine show improve-

ments in running time by a factor of i0 over those used in Level 15.

FUTURE DEVELOPMENTS

One of the more important future hardware developments will be the avail-

ability of much faster arithmetic units. The improvements in speed will come

from the use of parallel processors and the use of vector processors. The

modular design of NASTRAN should make it possible to take advantage of these

new hardware developments by changing only the matrix operation routines. In

some cases, it may only be necessary to change the inner loops in the matrix

operation routines. In any event, the basic packing routines and the string

notation should be useful with these new types of arithmetic units.

Another important hardware development will be the use of high capacity,

high speed, secondary storage devices. These high speed storage devices will

consist of such things as extended core storage devices and fixed head drums,

as well as high speed, high density disc storage devices. The organization of

the NASTRAN packing and I/_ routines lends itself to easy modification for use
! with different types of secondary storage devices. A modification has already

: been made for Level 16 to include the use of extended core storage devices on

CDC machines.

! The organization of the NASTRAN I/_ routines and the use of working storage
and main memory adapt well to the use of paging devices, such as are used with
buffer memories and virtual memory machines. The NASTRAN matrix routines tend

•, to access blocks of information in main memory in a sequential manner. The net

result is, that even for large problems, only a small amount of working space

needs to be resident in main memory at any one time. Furthermore, particularly

:_ with the new Level 16 matrix routines, the number of transfers between main
storage and secondary storage have been substantially reduced, with a resulting
reduction in the work load for paging devices.

,-., CONCLUSIONS

:i!i The following conclusions are drawn relative to improvements in NASTRANefficiency:

iiil 1. Most problems will run at least twice as fast on Level 16 as Level 15

due to improvements in times for matrix assembly, equation solution, deccmposi-
_ ' tion, and matrix packing.

2. The use of multiple I/_ buffers in main memory along with the nontrans-
mit read and write options can make an individual functional module competitive

_! 16 *

"" I

1974006473-022

b

I" w

with core held programs, because no transfers to secondary storage are made and
indexing is done directly into the working arrays.

3. The modular design of NASTR/_ has made modification easy and should
continue to make it relatively easy to adapt NASTRANto new hardware and im-
provements in the state of the art for matrix operations and data processing.

'. j !
i

l

Table 1. S_mmary of MPYADOperations

• , [A][B] + [C] = [D]

r.L i. ,

_latrixDensity Arithmetic Time

i |m H I| I iMPYADHethod

I [A] [B] Strings Density ;

i m i i i i i • m i ill

Sparse Dense 1 [B] [A]

i Dense Sparse 2 [A] [A] _,[B]
Sparse Sparse 2 [A] [A] _ [B]

Dense Dense 1 [B] [A]
' '' I I II I I

[_]T[B] • [C]., [D]
J In i I i i iBm _ I i i • I I I m

!
Hatrlx I Arithmetic TimeDensit_ , j , , ,,

I MPYADMethod

[A] _,___[]1_..............J............. S.lngs Density

Sparse Dense 1 [B] [A]

Dense Sparse _ [A] [B]

Spars, Sparse 2 [A] [A]

Dense Dense 1 [B] [A]

In HI •

i

1974006473-024

NUMBEROF GRID POINTS _..

Ftsure 1.- Comparison of matrix assembly procedures.

•* :L

19 _ '

i

1974006473-025

, ®¢;,®®@©®@ _@@@@@_
:--.-- .v ,,.,.-... .-.--:..::.::.: ,:X::_!

@Lx x..x/_ x !:oiii_i ×',.:.". :.',',

:.: X X 0 i_07:::i 0

' x x x '_:0!i x
:b:.:.:.i:

X X X _ O

t''_ ®xxxxx o(_ X X X X X 0 X

' (_ X X X X X 0 0

®_xxxxo
(_, X X X X X

.. (_ X X X X

• 10 X X X

:, X X

:"- (_ X

, ,,..... Fi&ure 2.- Decomposition with first row as pivot, a1 row.

""LI _; 20

I

1974006473-026

1974006473-027

Ii

|- .

t
• 1

J
1

1
f

2 22 23 Z4 25 J
.... i I I I II I 1 1

7

? 16 17 18 ii lg 20

!
t

11 _ • 12 ,, 13 14 , 15

_T

6 7 8 9 10
| i ii i

t

i l • i ,, ,

_i ,, Figure 6.- Ordering for band matrix

I_ e

• I I I_ J
i

] 974006473-030

!

.at

i

l 13 4 .>3 10 9
"i _ m I i

? 15 , 16 l ;'4 12 ,, II

j,

1 8 25 22 21
i_m I I m

I 3 I. 20 8 7m I

I I I

2 19 6 5

Figure 7.- Ordering for partitioning.

1974006473-031

!

x x x i

X 0 X X :

X X X 0

X 0 X 0 X

X X X

X 0 X X

X X 0 X

X 0 X 0 X

_, X X X

X 0 X X

t X X X 0
l X 0 X 0 X

Il-_ : X X X

X 0 X X

i SYM.
X X X 0

X 0 X 0 X

X X 0 0

X 0 0 0 0 X

X X 0 0 0 0 0

X 0 0 0 0 X

X X 0 0 0

X 0 0 X

X X 0

X X

X

Figure 8.- Nonzero te_s in trla_ilar factor _en ordered for partitioning.

3

i

26

1974006473-032

1974006473-033

_ _,1 _4 _,1 ,---I r---I I

X .. _.,1 _1C'M

i Xi I_1<-.,I_1 I,.,!,--,! _.
' i

o

o
I ",_

1.1

t .- _ ,
I

• ?-e _

1974006473-034

